Extrapolation-Based References Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in Parkinson’s Disease Dementia.
2016
PURPOSE:
Conventional motion and eddy-current correction, where each diffusion-weighted volume is registered to a non diffusion-weighted reference, suffers from poor accuracy for high b-value data. An alternative approach is to extrapolate reference volumes from low b-value data. We aim to compare the performance of conventional and extrapolation-based correction of diffusional kurtosis imaging (DKI) data, and to demonstrate the impact of the correction approach on group comparison studies.
METHODS:
DKI was performed in patients with Parkinson’s disease dementia (PDD), and healthy age-matched controls, using b-values of up to 2750 s/mm2. The accuracy of conventional and extrapolation-based correction methods was investigated. Parameters from DTI and DKI were compared between patients and controls in the cingulum and the anterior thalamic projection tract.
RESULTS:
Conventional correction resulted in systematic registration errors for high b-value data. The extrapolation-based methods did not exhibit such errors, yielding more accurate tractography and up to 50% lower standard deviation in DKI metrics. Statistically significant differences were found between patients and controls when using the extrapolation-based motion correction that were not detected when using the conventional method.
CONCLUSION:
We recommend that conventional motion and eddy-current correction should be abandoned for high b-value data in favour of more accurate methods using extrapolation-based references.